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“DIVERGENT” RAMANUJAN-TYPE SUPERCONGRUENCES

JESÚS GUILLERA AND WADIM ZUDILIN

(Communicated by Matthew A. Papanikolas)

Abstract. “Divergent” Ramanujan-type series for 1/π and 1/π2 provide us
with new nice examples of supercongruences of the same kind as those re-
lated to the convergent cases. In this paper we manage to prove three of the
supercongruences by means of the Wilf–Zeilberger algorithmic technique.

1. Introduction

In the spirit of [19], the two supercongruences

p−1
∑

n=0

( 12 )
3
n

n!3
(3n+ 1)22n ≡ p (mod p3) for p > 2,(1)

p−1
∑

n=0

( 12 )
5
n

n!5
(10n2 + 6n+ 1)(−1)n22n ≡ p2 (mod p5) for p > 3,(2)

correspond to divergent Ramanujan-type series for 1/π and 1/π2, respectively (cf.
Section 4 below); the letter p is reserved for primes throughout the paper. Further-
more, we have more congruences of this kind:

p−1
∑

n=0

( 12 )
3
n

(1)3n
(3n+ 1)(−1)n23n ≡

(−1

p

)

p (mod p3) for p > 2,(3)

p−1
∑

n=0

( 12 )
3
n

(1)3n
(21n+ 8)26n ≡ 8p (mod p3) for p > 2,(4)
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n=0

( 12 )n(
1
4 )n(

3
4 )n

(1)3n
(5n+ 1)(−1)n

(

4

3

)2n
?≡
(−3

p

)

p (mod p3) for p > 3,(5)

p−1
∑

n=0

( 12 )n(
1
4 )n(

3
4 )n

(1)3n
(35n+ 8)

(

4

3

)4n
?≡ 8p (mod p3) for p > 3,(6)
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p−1
∑

n=0

( 12 )n(
1
3 )n(

2
3 )n

(1)3n
(11n+ 3)

(

27

16

)n
?≡ 3p (mod p3) for p > 2,(7)

p−1
∑

n=0

( 12 )
5
n

(1)5n
(205n2 + 160n+ 32)(−1)n210n

?≡ 32p2 (mod p5) for p > 3,(8)

p−1
∑

n=0

( 12 )n(
1
3 )n(

2
3 )n(

1
4 )n(

3
4 )n

(1)5n
(9)

×(172n2 + 75n+ 9)(−1)n
(

27

16

)n
?≡ 9p2 (mod p5) for p > 2.

Here
(

·
p

)

is the Legendre symbol and the Pochhammer notation (a)b is used for

denoting Γ(a + b)/Γ(b) also in the cases when b is not a non-negative integer. Of

course, if b = n ∈ Z≥0 we have, as usual, (a)n =
∏n−1

k=0(a+ k) with the convention
that the empty product equals 1, while 1/(m)−n = Γ(m)/Γ(m − n) vanishes for
positive integers m ≤ n—the fact we will use repeatedly in the text. The question
mark indicates that the corresponding supercongruence remains conjectural. The
non-questioned entries (1)–(3) are proved in this paper by extending the method
of [19], while the supercongruence (4) (even in a more general form) is shown by
Zhi-Wei Sun in his preprint [14].

Note that we can sum in (1), (2), (4), (3), and (8) up to p−1
2 , since the p-adic

order of ( 12 )n/n! is 1 for n = p+1
2 , . . . , p− 1.

Main Theorem. The following supercongruences take place:

(p−1)/2
∑

n=0

( 12 )
3
n

n!3
(3n+ 1)22n ≡ p (mod p3) for p > 2,(10)

(p−1)/2
∑

n=0

( 12 )
5
n

n!5
(10n2 + 6n+ 1)(−1)n22n ≡ p2 (mod p5) for p > 3,(11)

p−1
∑

n=0

( 12 )
3
n

(1)3n
(3n+ 1)(−1)n23n ≡ (−1)(p−1)/2p (mod p3) for p > 2.(12)

We find it quite illogical that our strategy based on the creative Wilf–Zeilberger the-
ory [11] of WZ-pairs allows us to do only three entries from the list (1)–(9); a very
similar lack of luck was reported in [19]. Although we have WZ-pairs for (4)–(8)
as well, they seem to be quite helpless for showing the corresponding congruences
modulo the expected powers of p. Because of the clear relationship of such congru-
ences with Ramanujan’s formulae for 1/π and their generalizations (see [19] and
Section 4), we do expect a more universal method for proving the Ramanujan-type
supercongruences.

In Section 2 we present auxiliary congruencesl; some of them are remarkable on
their own. Section 3 contains the proofs of (10)–(12). The final section, Section 4,
reviews the “divergent” Ramanujan-type series for 1/π and 1/π2 as our motivation
to the the above list of supercongruences.

Throughout the paper, the record a ≡ b (mod pk) = c means a ≡ b (mod pk) and
b = c so that it signifies the congruence a ≡ c (mod pk) as a consequence. This is
used in formulas (20), (28), (29), (30), (38), (43), and (45) below.
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“DIVERGENT” RAMANUJAN-TYPE SUPERCONGRUENCES 767

2. Precongruences

In this section we summarize our needs for proving the supercongruences of the
Main Theorem.

Lemma 1. The following congruences are valid :

(p−1)/2
∑

n=1

(

2n
n

)

n
≡ 0 (mod p) for p > 3,(13)

(p−1)/2
∑

n=1

(−1)n
(

2n
n

)

n2
≡ 0 (mod p) for p > 5.(14)

Proof. The first congruence follows from specialization N = (p − 1)/2 of Staver’s
identity [13]:

N
∑

n=1

(

2n

n

)

1

n
=

N + 1

3

(

2N + 1

N

) N
∑

n=1

1

n2
(

N
n

)2 .

The second congruence is the modulo p reduction of Tauraso’s congruence in [16,
Theorem 4.2]. It is interesting to mention that the latter follows from the N = p
specialization of another combinatorial identity,

N
∑

n=1

(

2n

n

)

n2

4N4 + n4

n−1
∏

k=1

N4 − k4

4N4 + k4
=

2

5N2
,

conjectured by Borwein and Bradley [3] and proved by Almkvist and Granville [1].
�

Denote q(x) = qp(x) = (xp−1 − 1)/p as the Fermat quotient of x ∈ Z∗
p.

Lemma 2. The following congruence is true:

(15)

(p−3)/2
∑

n=0

2−2n
(

2n
n

)

2n+ 1
≡ −(−1)(p−1)/2qp(2) (mod p) for p > 2.

Proof. Note that ( 12 )n ≡ ( 12 − p
2 )n (mod p) and write the left-hand side as

(16)

(p−3)/2
∑

n=0

( 12 )n

n!(2n+ 1)
≡

(p−3)/2
∑

n=0

( 12 − p
2 )n

n!(2n+ 1)
(mod p).

The latter is nothing more than a terminating hypergeometric series with one term
missing,

N−1
∑

n=0

(−N)n(
1
2 )n

n!( 32 )n
= − (−1)N

2N + 1
+ 2F1

(

−N, 1
2 ;

3
2 ; 1

)

, where N = (p− 1)/2.

It can be summed with the help of the Chu–Vandermonde theorem [12, Eq. (1.7.7)]:

(17)

(p−3)/2
∑

n=0

( 12 − p
2 )n

n!(2n+ 1)
= − (−1)(p−1)/2

p
+

(1)(p−1)/2

p( 12 )(p−1)/2

.
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768 JESÚS GUILLERA AND WADIM ZUDILIN

Finally, recall Morley’s congruence [10]:

(18)
( 12 )(p−1)/2

(1)(p−1)/2
=

(

p− 1
p−1
2

)

2−(p−1) ≡ (−1)(p−1)/22p−1 (mod p2).

Combining (16), (17), (18) and 2p−1 ≡ 1 (mod p) we arrive at (15). �

Lemma 3. For a prime p > 3, let x be a rational number such that both x and

1−x do not involve p in their prime factorizations and 1−x is a quadratic residue

modulo p. Take y such that y2 ≡ 1− x (mod p). Then

p−1
∑

n=1

(

2n

n

)(

x

4

)n

≡ px

2(1− x)

(

−q(x) + q(y + 1)(y + 1)− q(y − 1)(y − 1)
)

(mod p2).

(19)

Proof. It is well known that

p−1
∑

n=1

xn

n
=

p−1
∑

n=1

(1)n−1x
n

(1)n
≡

p−1
∑

n=1

(1− p)n−1x
n

(1)n
(mod p)(20)

= −1

p

p−1
∑

n=1

(−p)nx
n

(1)n
=

1

p

(

1− xp −
p

∑

n=0

(

p

n

)

(−x)n
)

=
1

p

(

1− xp − (1− x)p
)

and, by replacing x with −x and taking the appropriate linear combination of the
two expressions,

(21)

(p−1)/2
∑

k=1

x2k−1

2k − 1
≡ 1

2p

(

(1 + x)p − (1− x)p − 2xp
)

(mod p).

Consider

F (n, k) =
( 12 − k)n

(1)n

xn

(1− x)k
and G(n, k) = − ( 32 − k)n−1

(1)n−1

xn

(1− x)k
.

These functions satisfy

(22)

p−1
∑

n=1

(

2n

n

)(

x

4

)n

=

p−1
∑

n=1

F (n, 0)

and

(23) F (n, k − 1)− F (n, k) = G(n+ 1, k)−G(n, k).

The latter relation signifies the fact that F (n, k) and G(n, k) form a WZ-pair.
Summing (23) over n = 0, 1, . . . , p− 1 we obtain

(24)

p−1
∑

n=0

F (n, k − 1)−
p−1
∑

n=0

F (n, k) = G(p, k)−G(0, k) = G(p, k);

hereG(0, k) = 0 because its expression involves (1)−1 in the denominator. Summing
the result (24) over k = 1, . . . , p+1

2 we arrive at

(25)

p−1
∑

n=1

F (n, 0) = −F (0, 0) +

p−1
∑

n=0

F (n, p+1
2 ) +

(p+1)/2
∑

k=1

G(p, k).
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For n = 1, 2, . . . , p− 1,

F (n, p+1
2 ) =

(−p
2 )n

(1)n

xn

(1− x)(p+1)/2
= −p

2

(1− p
2 )n−1

(1)n

xn

(1− x)(p+1)/2
,

and since (1− p
2 )n−1 ≡ (1)n−1 (mod p), we obtain

(26)

p−1
∑

n=1

F (n, p+1
2 ) ≡ − p

2(1− x)(p+1)/2

p−1
∑

n=1

xn

n
≡ −1− xp − (1− x)p

2(1− x)(p+1)/2
(mod p2)

by (20). In addition,

(27) F (0, 0) = 1 and F (0, p+1
2 ) =

1

(1− x)(p+1)/2
.

Furthermore, we have

G(p, k) = − ( 12 − k)p

( 12 − k)(p− 1)!

xp

(1− x)k
.

Note that the multiples 1
2 − k + j, j = 0, 1, . . . , p − 1, runs through the complete

residue system modulo p, with exactly one of them, p
2 for j = p−1

2 + k, divisible

by p; therefore ( 12 − k)p ≡ 1
2p! (mod p2) for k = 1, . . . , p−1

2 . Since 1
2 − k is coprime

with p for those k, we have

G(p, k) ≡ p

2k − 1

xp

(1− x)k
(mod p2).

If k = p+1
2 , then

( 12 − k)p
1
2 − k

= (1− p
2 )p−1 ≡ (p− 1)! (mod p2),

because (1−ε)p−1 = (1)p−1 ·(1−εHp−1+O(ε2)) and the harmonic number Hp−1 =
1 + 1

2 + · · ·+ 1
p−1 ≡ 0 (mod p) (see, for example, (20) with x = 1). Thus, we have

G(p, p+1
2 ) ≡ − xp

(1− x)(p+1)/2
(mod p2)

so that

(p+1)/2
∑

k=1

G(p, k) ≡ pxp(1− x)−1/2

(p−1)/2
∑

k=1

(

(1− x)−1/2
)2k−1

2k − 1
− xp

(1− x)(p+1)/2

(28)

≡ xp ·
(

1 + (1− x)−1/2
)p −

(

1− (1− x)−1/2
)p − 2(1− x)−p/2

2(1− x)1/2

− xp

(1− x)(p+1)/2
(mod p2)

= xp ·
1
2

(

(1− x)1/2 + 1
)p − 1

2

(

(1− x)1/2 − 1
)p − 2

(1− x)(p+1)/2

by (21).

Licensed to University of Newcastle. Prepared on Sun Oct 28 21:13:17 EDT 2012 for download from IP 134.148.10.13.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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Substituting (26), (27) and (28) into (25) we obtain, modulo p2,

p−1
∑

n=1

F (n, 0) ≡ −1 +
1 + (1− x)p − 3xp+xp

(

(1− x)1/2+1
)p − xp

(

(1− x)1/2 − 1
)p

2(1− x)(p+1)/2

(29)

=

(

(1− x)(p−1)/2 − 1
)2

2(1− x)(p−1)/2

+
x

2(1− x)

1− 3xp−1+xp−1
(

(1− x)1/2+1
)p − xp−1

(

(1− x)1/2 − 1
)p

(1− x)(p−1)/2

=
(yp−1 − 1)2

2yp−1
+

x

2(1− x)

1− 3xp−1 + xp−1(y + 1)p − xp−1(y − 1)p

yp−1
.

Noting that (yp−1 − 1)2 = p2q(y)2 ≡ 0 (mod p2),

1− 3xp−1 + xp−1(y + 1)p − xp−1(y − 1)p

p

(30)

= −xp−1 − 1

p
(3− (y + 1)p + (y − 1)p)

+
(y + 1)p−1 − 1

p
(y + 1)− (y − 1)p−1 − 1

p
(y − 1)

≡ −q(x)(3− (y + 1) + (y − 1)) + q(y + 1)(y + 1)− q(y − 1)(y − 1) (mod p)

= −q(x) + q(y + 1)(y + 1)− q(y − 1)(y − 1),

and yp−1 ≡ 1 (mod p), we obtain the required congruence (19) from (22) and (29).
�

Lemma 4. The following congruences are valid :

p−1
∑

n=1

(−1)n2n
(

2n
n

)

n
≡ −4qp(2) (mod p) for p > 2,(31)

3

p−1
∑

n=1

(−1)n2n
(

2n

n

)

≡ −4pqp(2) (mod p2) for p > 2.(32)

Proof. It is shown in [15, Theorem 1.2] that for m in Z∗
p,

(33)

p−1
∑

n=1

(−1)n
(

2n
n

)

nmn
≡ 2

m
· m

p − Vp(m)

p
(mod p),

where the sequence Vk(x) is defined by V0(x) = 2, V1(x) = x, and Vk(x) =
x(Vk−1(x)+Vk−2(x)) for k ≥ 2. Although the theorem is stated for m ∈ Z only, the
proof does not make use of this integrality; we can apply it for m = 1/2 as well. In
this case Vk(1/2) = 1 + (−1)k/2k so that the right-hand side of (33) becomes (31)
if we additionally use 2p−1 ≡ 1 (mod p).
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The congruence (32) is clear for p = 3, while for p > 3 it follows from specializa-
tion x = −8, y = 3 of (19) and noting that

qp(−8) =
23(p−1) − 1

p
=

2p−1 − 1

p
(22(p−1) + 2p−1 + 1) ≡ 3qp(2) (mod p),

qp(4) =
22(p−1) − 1

p
=

2p−1 − 1

p
(2p−1 + 1) ≡ 2qp(2) (mod p). �

3. Proofs of the supercongruences

Proof of (10). Take

F (n, k) = (3n+ 2k + 1)
( 12 )n(

1
2 + k)2n

(1)3n
22n and G(n, k) = − ( 12 )n(

1
2 + k)2n−1

(1)3n−1

22n.

Then we have

(34)

(p−1)/2
∑

n=0

( 12 )
3
n

n!3
(3n+ 1)22n =

(p−1)/2
∑

n=0

F (n, 0)

and (23), so that F (n, k) and G(n, k) form a WZ-pair. Summing (23) over n =
0, 1, . . . , p−1

2 , we obtain

(35)

(p−1)/2
∑

n=0

F (n, k − 1)−
(p−1)/2
∑

n=0

F (n, k) = G( p+1
2 , k)−G(0, k) = G( p+1

2 , k).

Furthermore, for k = 1, 2, . . . , p−1
2 we have

G( p+1
2 , k) = −

( 12 )(p+1)/2(
1
2 + k)2(p−1)/2

(1)3(p−1)/2

2p+1 ≡ 0 (mod p3),

because each of the three Pochhammer products in the numerator is divisible by p
while the denominator,

(

p−1
2

)

!3, is coprime with p. Comparing this result with (35),
as in the proof of Theorem 1 in [19], we see that

(p−1)/2
∑

n=0

F (n, 0)≡
(p−1)/2
∑

n=0

F (n, 1)≡
(p−1)/2
∑

n=0

F (n, 2)≡ · · · ≡
(p−1)/2
∑

n=0

F (n, p−1
2 ) (mod p3).

Hence we can replace, modulo p3, our sum (34) by

(p−1)/2
∑

n=0

F (n, p−1
2 ) =

(p−1)/2
∑

n=0

(3n+ p)
( 12 )n(

p
2 )

2
n

(1)3n
22n(36)

= p+ p

(p−1)/2
∑

n=1

( 12 )n(
p
2 )

2
n

(1)3n
22n + 3

(p−1)/2
∑

n=1

n
( 12 )n(

p
2 )

2
n

(1)3n
22n

= p+
p3

4

(p−1)/2
∑

n=1

( 12 )n(1 +
p
2 )

2
n−1

(1)3n
22n

+
3p2

4

(p−1)/2
∑

n=1

n
( 12 )n(1 +

p
2 )

2
n−1

(1)3n
22n.
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772 JESÚS GUILLERA AND WADIM ZUDILIN

(Note that, in contrast with the proofs in [19], the newer sum is not reduced to a
single term.) Comparing the resulted expression (36) for (34) we see that (10) is
equivalent to

(37)

(p−1)/2
∑

n=1

n
( 12 )n(1 +

p
2 )

2
n−1

(1)3n
22n ≡ 0 (mod p) for p > 3.

On noting that (1 + p
2 )n−1 ≡ (1)n−1 (mod p), we reduce (37) to its equivalent,

(p−1)/2
∑

n=1

( 12 )n

n(1)n
22n =

(p−1)/2
∑

n=1

(

2n
n

)

n
≡ 0 (mod p) for p > 3,

which is exactly (13). �

Proof of (11). The proof is very similar. This time we take

F (n, k) = (10n2 + 12nk + 4k2 + 6n+ 4k + 1)
( 12 )n(

1
2 + k)4n

(1)5n
(−1)n22n

and

G(n, k) = (n+ 2k − 1)
( 12 )n(

1
2 + k)4n−1

(1)5n−1

(−1)n22n+1

with the motive

(p−1)/2
∑

n=0

( 12 )
5
n

n!5
(10n2 + 6n+ 1)(−1)n22n =

(p−1)/2
∑

n=0

F (n, 0)

and (23). Then, as above, we find that

(p−1)/2
∑

n=0

F (n, 0) ≡
(p−1)/2
∑

n=0

F (n, p−1
2 ) (mod p5)(38)

=

(p−1)/2
∑

n=0

(10n2 + 6np+ p2)
( 12 )n(

p
2 )

4
n

(1)5n
(−1)n22n

= p2 +
p6

16

(p−1)/2
∑

n=1

( 12 )n(1 +
p
2 )

4
n−1

(1)5n
(−1)n22n

+
3p5

8

(p−1)/2
∑

n=1

n
( 12 )n(1 +

p
2 )

4
n−1

(1)5n
(−1)n22n

+
5p4

8

(p−1)/2
∑

n=1

n2 (
1
2 )n(1 +

p
2 )

4
n−1

(1)5n
(−1)n22n,

and our task is to show that

(p−1)/2
∑

n=1

n2 (
1
2 )n(1 +

p
2 )

4
n−1

(1)5n
(−1)n22n ≡ 0 (mod p) for p > 5.
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Using (1 + p
2 )n−1 ≡ (1)n−1 (mod p) the latter reduces to

(p−1)/2
∑

n=1

( 12 )n

n2(1)n
(−1)n22n =

(p−1)/2
∑

n=1

(−1)n
(

2n
n

)

n2
≡ 0 (mod p) for p > 5,

which is (14). �

Proof of (12). Take the WZ-pair

F (n, k) = (3n+ 2k + 1)
( 12 )n(

1
2 + k)2n(

1
2 )k

(1)2n(1 + 2k)n(1)k
(−1)n23n

and

G(n, k) =
( 12 )n(

1
2 + k)2n−1(

1
2 )k

(1)2n−1(1 + 2k)n−1(1)k
(−1)n23n−2.

Summing (23) over n = 0, 1, . . . , p− 1 we get

(39)

p−1
∑

n=0

F (n, k − 1)−
p−1
∑

n=0

F (n, k) = G(p, k)−G(0, k) = G(p, k).

Summing (39) further over k = 1, 2, . . . , p−1
2 we obtain

(40)

p−1
∑

n=0

F (n, 0) =

p−1
∑

n=0

F (n, p−1
2 ) +

(p−1)/2
∑

k=1

G(p, k).

Note that

G(p, k) =
( 12 + p)2k−1(1)2k

( 12 )k(1 + p)2k−1(1)k
·

( 12 )
3
p

p(1)3p−1

(−1)p23p−2

= −
( 12 + p)2k−1 · 22k
(1 + p)2k−1

·
( 12 )

3
p

p(p− 1)!3
23p−2.

For k = 1, 2, . . . , p−1
2 neither ( 12+p)k−1 nor (1+p)2k−1 is divisible by p. In addition,

we have ( 12 + p)k−1 ≡ ( 12 )k−1 (mod p) and (1+ p)2k−1 ≡ (1)2k−1 (mod p). Since the

factor in G(p, k) independent of k is divisible by p2, we conclude that

(p−1)/2
∑

k=1

G(p, k) ≡ −
( 12 )

3
p

p(p− 1)!3
23p−2

(p−1)/2
∑

k=1

( 12 )
2
k−1

(2k − 1)!
22k

≡ −p2
(

2p− 1

p− 1

)3

2−3p+3

(p−1)/2
∑

k=1

2−2(k−1)
(

2k−2
k−1

)

2k − 1
(mod p3).

Finally, we use
(

2p−1
p−1

)

≡ 1 (mod p), 2p−1 ≡ 1 (mod p) and the congruence (15) to
get

(41)

(p−1)/2
∑

k=1

G(p, k) ≡ (−1)(p−1)/2p(2p−1 − 1) (mod p3).

Furthermore,

(42) F (0, p−1
2 ) = p

( 12 )(p−1)/2

(1)(p−1)/2
≡ (−1)(p−1)/2p2p−1 (mod p3)
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by (18) and

F (n, p−1
2 ) = (3n+ p)

( 12 )n(
p
2 )

2
n(

1
2 )(p−1)/2

(1)2n(p)n(1)(p−1)/2
(−1)n23n

≡ (3n+ p)
( 12 )n(1 +

p
2 )

2
n−1

(1)2n(1 + p)n−1
(−1)n23n−2 · (−1)(p−1)/2p2p−1 (mod p3).

Using (1+ ε)n−1 = (1)n−1 · (1 + εHn−1 +O(ε2)), where Hn−1 = 1+ 1
2 + · · ·+ 1

n−1 ,

with ε = p
2 and p we find that

(1+ p
2 )

2
n−1

(1+p)n−1
=

(1)2n−1 · (1+ p
2Hn−1+O(p2))2

(1)n−1 · (1 + pHn−1 +O(p2))
=(1)n−1 ·(1+O(p2)) ≡ (1)n−1 (mod p2).

Hence

F (n, p−1
2 ) ≡ (3n+ p)

( 12 )n

(1)nn
(−1)n23n−2 · (−1)(p−1)/2p2p−1 (mod p3)(43)

=
1

4
(3n+ p)

(−1)n2n
(

2n
n

)

n
· (−1)(p−1)/2p2p−1

and

p−1
∑

n=1

F (n, p−1
2 ) ≡ (−1)(p−1)/2p2p−1

(

3

4

p−1
∑

n=1

(−1)n2n
(

2n

n

)

+
p

4

p−1
∑

n=1

(−1)n2n
(

2n
n

)

n

)

(44)

≡ (−1)(p−1)/2p2p−1 · 2(1− 2p−1)

≡ (−1)(p−1)/2p · 2(1− 2p−1) (mod p3)

by (31), (32) and 2p−1 ≡ 1 (mod p).
Substituting (41), (42) and (44) into (40) we obtain

p−1
∑

n=0

F (n, 0) ≡ (−1)(p−1)/2p
(

2p−1 + 2(1− 2p−1) + (2p−1 − 1)
)

(mod p3)(45)

= (−1)(p−1)/2p,

the required congruence. �

4. “Divergent” Ramanujan-type series

In [19], the second-named author generalized an observation of L. Van Hamme
about Ramanujan-type identities for 1/π and 1/π2. The idea is to associate with
each such identity

∞
∑

n=0

An(a+ bn)zn =
r
√
d

π
or

∞
∑

n=0

An(a+ bn+ cn2)zn =
r
√
d

π2
,

where a, b, c, z, and r are rational and An is a related Pochhammer ratio (or, more
generally, an Apéry-like sequence; cf. [19]), the supercongruence

p−1
∑

n=0

An(a+ bn)zn
?≡ a

(−d

p

)

p (mod p3)

Licensed to University of Newcastle. Prepared on Sun Oct 28 21:13:17 EDT 2012 for download from IP 134.148.10.13.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



“DIVERGENT” RAMANUJAN-TYPE SUPERCONGRUENCES 775

or

(46)

p−1
∑

n=0

An(a+ bn+ cn2)zn
?≡ a

(

d

p

)

p2 (mod p5),

respectively, for all p ≥ p0. Recently [9], the first-named author went even fur-
ther and considerably extended the pattern; however this remains an unproven
observation.

The general machinery for proving Ramanujan-like series for 1/π [2, 4, 18] pro-
duces, in several cases, divergent instances such as

(47)

∞
∑

n=0

( 12 )
3
n

(1)3n
(3n+ 1)22n “=”

−2i

π
,

∞
∑

n=0

( 12 )
3
n

(1)3n
(3n+ 1)(−1)n23n “=”

1

π
.

The summations in (47) have to be understood as the analytic continuation of the
corresponding 3F2-hypergeometric series; for example, the second formula in (47)
can be given by

1

2πi

∫ −1/4+i∞

−1/4−i∞

( 12 )
3
s

(1)2s
Γ(−s)(3s+ 1)23s ds =

1

π
.

The first appearance of divergent series for 1/π is [2, p. 371]. In view of the obser-
vation from [19], the formulae in (47) motivate our supercongruences (1) and (3),
respectively.

Curiously, our study of the first identity in (47) led us to “complex” convergent
Ramanujan-type formulae for 1/π such as

(48)
∞
∑

n=0

( 12 )
3
n

(1)3n

(

105− 21
√
−7

32
n+

49− 13
√
−7

64

)

·
(

47 + 45
√
−7

128

)n

=

√
7

π
.

As far as we know, such formulae do not exist in the literature. Note that applica-
tion of the quadratic transformation

3F2

(

1
2 ,

1
2 ,

1
2

1, 1

∣

∣

∣

∣

z

)

= (1− z)−1/2 · 3F2

(

1
4 ,

1
2 ,

3
4

1, 1

∣

∣

∣

∣

−4z

(1− z)2

)

(the method used in [5] and [17]) translates (48) into the identity

(49)

∞
∑

n=0

( 12 )n(
1
4 )n(

3
4 )n

(1)3n
(35n+ 8)

(

4

3

)4n

“=” − 18i

π
,

which has to be understood as the analytic continuation of the hypergeometric
series on the left-hand side to C\ (−∞, 0] and which serves as the prototype of (6).
All identities for 1/π, including the divergent and complex instances (47)–(49) and
others, can be proven by the modular argument. We plan to address these issues
in another project. In [8], the first-named author gives proofs of several divergent
hypergeometric formulae for 1/π and 1/π2 using a version of the Wilf–Zeilberger
algorithm.

The theory developed in [7] allows us to obtain numerically the parameters of
the divergent Ramanujan-like series for 1/π2 as well. For example, the expansion

∞
∑

n=0

( 12 )
5
n+x

(1)5n+x

(a+ b(n+ x) + c(n+ x)2)(−1)nzn+x =
1

π2
− k

2
x2 +O(x4) as x → 0,
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776 JESÚS GUILLERA AND WADIM ZUDILIN

where z > 0, corresponds to the case s = t = 1/2 and u = −1 of [7, Exp. 1.2],
and defines z, a, b and c as functions of k. All these quantities admit a natural
parametrization by means of τ , where τ2 = c2/(1+z); see [7, Eq. (3.47)] for details.
For this case, the first-named author discovered experimentally that the relation
z(τ1)z(τ2) = 1 implies

(50) (k1 + 1)τ2 = (k2 + 1)τ1, (k1 + 1)(k2 + 1) + 8 = 4τ1τ2,

and also

(51) c(τ2) =
τ2
τ1

· c√
z
(τ1), b(τ2) =

τ2
τ1

· c− b√
z
(τ1), a(τ2) =

τ2
τ1

· c− 2b+ 4a

4
√
z

(τ1).

The choice τ1 =
√
5 corresponds to the Ramanujan-like series

∞
∑

n=0

( 12 )
5
n

(1)5n
(20n2 + 8n+ 1)

(−1)n

22n
=

8

π2

proven in [6], in which case k = 1 and z(τ1) = 1/4. This series suggests the existence

of a “divergent” companion with z(τ2) = 4, τ2 =
√
5/2, k = 0, c = 5/2, b = 3/2

and a = 1/4; the values τ and k are found from (50) and c, b and a from (51). The
resulting set corresponds to the series

∞
∑

n=0

( 12 )
5
n

(1)5n
(10n2 + 6n+ 1)(−1)n22n “=”

4

π2
,

with the left-hand side understood as the analytic continuation of the participating
hypergeometric series to C \ [1,+∞). A similar duality for the 3F2-evaluations of
1/π can be explained by the modular origin of the corresponding hypergeometric
series, such as the one we give for (47). The duality mechanism for the 5F4-examples
remains a mystery.

As already pointed out in [19], all Ramanujan-type series for 1/π and their
generalizations possess unexpectedly strong arithmetic properties. In particular,
these are reflected by the supercongruences for truncated sums; it is probably not
surprising to see the examples (1)–(9). What is more remarkable, the origin of
the p-analogues makes no difference, whether they come from convergent or diver-
gent formulae. This kind of democracy as well as an apparent simplicity of the
supercongruences make them an attractive object for further investigation.
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